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LETTER TO THE EDITOR 

The magnetism of rare-earth intermetallics using computer 
algebra: application to PrAlz and NdAlz 

R R Sobral, A P G u i m m s  and X A da Silva 
Cenw Brasileiro de Pesquisas Fisicas, R Xavier Sigaud 150,22290-180 Rio de Janeiro, RJ, 
Brazil 

Received 23 August 1993 

Abstract The magnetism of rare& inrermetallic campounds is investigated with a 
model Hamiltonian containing aystal field and exchange terms. An algebraic analysis of 
Ihe characleristic polynomial associated wilh Ihe model is made and it is shown that for 
P?+ ( I  = 4) and Nd3+ ( J  = 912). in Ihe case of cubic symmetry. the ninth- and tenth-&gee 
polynomials are decomposed in10 simple factors. From these factors, analytical expressions for 
Ihe crystal field eigenvalues, lhe magnetic momenw and Ihe critical temperalures are derived. 
The resulu are applied to PrN2 and NdAIz; exchange parameters and effective g facIors are 
easily oMained from crystal field, Tc and low-temperature magnetic moments data. 

In order to analyse the magnetic properties of rare-earth intermetallic compounds one usually 
starts with a model Hamiltonian in which a crystal field term describes the electrostatic 
interaction of the 4f electrons of the rare-earth ions with the neighbour charges, and an 
exchange term accounts for the inter-ionic spin interaction. Both terms contain adjustable 
parameters, which must be determined using inelastic neutron scattering data and magnetic 
data [I]. The computation of magnetic quantities from the model Hamiltonian is usually 
done entirely with numerical methods, even for cubic symmetrical crystal fields and in the 
molecular field approximation. This not only complicates the best fitting process, but also 
makes less visible the role of the model parameters in determining the magnetic behaviour 
of different compounds. 

In this paper we show results of a computer algebra approach to determine eigenvalues 
and magnetic moments associated with the magnetic model Hamiltonian. In particular, we 
make an analysis of the magnetic behaviour of the ground state and obtain an analytic 
expression for the critical temperature. These results are applied to the intermetallic 
compounds RA12 and NdA12, which crystallize in the cubic Laves phase structure (C15). 
Using crystal field parameters, Curie temperatures and low-temperature magnetic moments 
obtained from the literature, we calculate the exchange parameter and the effective Land6 
factor for these compounds. 

The starting point is to obtain explicitly the characteristic polynomial associated with 
the model Hamiltonian 7i 

detI(J,nl~-6,,ylJ,m)l = O  (1) 

where the Hamiltonian has two parts: 

7-t=7tcf+7tw. 
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For cubic symmetry, the crystal field Hamiltonian can be written 

Xd= B ~ [ O , O + 5 O ~ ] + B ~ [ O ~ - 2 2 1 0 ~ ]  (3) 

where B4 and B6 are crystal field parameters and the 0; are Stevens’ operators, which are 
listed in the literature 121; IJ, m) are the eigenstates of J,, for a given angular momentum 
J .  Equation (3) is only valid in a coordinate system ( x ,  y, z )  which coincides with three 
of the fourfold symmetry axes of the crystal, the 2 axis is taken as the quantized direction. 
In others coordinate systems the form of X,f is less simple [3]. 

In the molecular field approximation 

Em, = -gpsh - J (4) 

where h is the total magnetic field: 

gpsh = g P B b  + h o k  - 1)*(J). 

In (5). g is the Land6 factor, p~g the Bohr magneton, ho the exchange parameter and h~ is 
the applied field; ( J )  is the thermal average of the angular momentum operator J .  

In order to compute the magnetic moments in the x direction, n = (l ,O,O),  let us 
rewrite (4) as Xmas = -gpghJx.  The magnetic moments are then obtained as 

where yi are the roots of the polynomial in y generated by equation ( I ) ,  a = gpBh and 
h = h e  n is the molecular field acting on the 4f electrons along the direction n (a unitary 
vector) (see equation (5)). The reason for choosing the spontaneous magnetization in the 
x direction is that it is the experimentally observed easy magnetic direction 141. Of course 
due to the cubic symmetry of the crystal field Hamiltonian (3). directions x ,  y and z, in our 
model, are magnetically equivalent. Actually, according to Boucherle amd Schweizer [5 ] ,  
at low temperature, below the Curie point, most of the R A 1 2  (R = rare earth) exhibit a small 
distortion in the unit cell. This may explain why experimentally the directions (l,O,O), 
(0.1,O) and (0,0,1) are not magnetically equivaient For the cases of &+(J = 4) and 
Nd3+(5 = 9/2), equation (1) was dealt with through computer algebra, yielding a ninth- 
and a tenthdegree polynomial, respectively. This was done using REDUCE, a well know 
algebraic program. REDUCE also allowed the factorization of these polynomials into smaller 
factors. In the case of Mi we obtained four factors: one of the third-degree, and three 
of the second-degree; for Nd3+ we also have four factors: two of third-degree and two of 
second-degree. They are listed in the appendix. 

These polynomials contain all the relevant magnetic information; let P(y, 8 4 -  8 6 ,  a) be 
one of the above mentioned factors, whose roots yi are the energy eigenvalues. 

We have 

From equations (7) and (8). we can obtain the ground state magnetic moment for each 
value of the exchange parameter. For the case of P?+, the ground state is given by the 
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Figure 1. Magnetic moment of the ground slate (in padrare-emh ion) for RA12 and NdAlr 
versus AI W. where A = (pes - 1)24. The curves were drawn using the crystal field parameters 
I and W given in fable 1. 

lowest mot of the third-degree polynomial; for Nd3+, the third-degree polynomial with the 
plus sign contains the ground state. The results are shown in figure 1 using the crystal 
field parameters of RA12 and NdAlz [I]; both curves show magnetic moment reduction, 
relative to the free ion value. For the RA12 curve, if A /  W < 0.43, there is no spontaneous 
magnetic order, although the magnetic moment of RA12 ( J  = 4) saturates much earlier 
than that of NdAlz ( J  = 9/2). The initial value of the magnetic moment in the NdAlz 
curve is (11/6)gp~. 

It is worth mentioning that for a = 0, the roots of the factor polynomials, i.e., the crystal 
field eigenvalues, are analytically expressed in terms of E4 and Eg; they are presented in the 
appendix. As far as we know, it is the first time these expressions have appeared in pnnC 
a particular solution for Ea = 0 was given by Penney and Schlapp [Z]. In fact, we have 
found that computer algebra can give analytical results for the crystal field eigenvalues of all 
rare-earth ions [6]. Crystal field eigenvalues are usually obtained numerically and displayed 
in tables or in graphical form, as in Lea er al [7]. These plots are used in the determination 
of crystal field parameters for intermetallic compounds, using inelastic neutron scattering 
data [8]. 

We will show how the factorized polynomials and their first and second derivatives can 
be used to obtain the energy eigenvalues of the model, up to a', 

yi ~ y : +  ( lim dyi) - U + -  ( lim - @Yi) a .  z 
a-0 da =-PO da' 

In order to obtain the coefficients of U and U* in (9). we take the limit 01 + 0 of 
equations (7). (8) and (IO) 

At this point, we would like to emphasize that in order to compute the coefficients 
lim.,o(aP/ay), lim,,o(ilP/acu), etc. in (7), (8) and (10) we have to make use of the 
analytical expmsions for the eigenvalues of the crystal field Hamiltonian. 
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For the ground state energy level we have, for P?: 

For Nd3+: 

where b4 and h6 are related to 5 4  and 56 (see appendix). In obtaining (1  1) and (12) we have 
assumed that the crystal field ground states of P?+ and Nd3+ are ra and r6, respectively; 
these are the cases of BAL2 and NdA12. Using (6). (1 1) and (12) we can obtain the threshold 
value of A0 (Ac/ W = 0.433) for the PrAI2 curve in figure 1. Also, using (6). (9) and (IZ), 
we can obtain the initial value of the magnetic moment (for Ao/ W = 0) for the NU12 
curve in the figure: the result is li&,o(dyo/da) = 11/6 (in gpB units). Using the same 
procedure. we can obtain analytically the limits as a -+ 0 of (dyilda) and (d2yi/da2) of all 
other levels. Expressions of energy eigenvalues, up to al. were given by Schumacher and 
Hollingsworth [9] for the case Bb = 0, using numerical methods. The value of the critical 
temperature is obtained from 

where the right hand side is linearized in a (a = A& - I)'(J * n)). An expression for Tc 
in the case of P$+ compounds is given in the appendix. 

Using the crystal field parameters and the experimental value of TC given in the review 
by Punvins and Leon [ I ]  for PrA12, the expression (A13) (see appendix) gives 

A 
( R e ~  - 1)'" = 1.55. 

W 

This result, together with the value of the moment mo = 2 . 8 ~ ~  for the ion P2+ in PrA12 
[I], allows, using the curve for PrA12 in the figure, the determination of g,E = 0.75. Again, 
using (14). 10 = 24.23 meV. A similar procedure was followed for Nd3+ in NdA12. The 
results for PrAlz and NU12 are given in table 1. 

Table 1. Compuld effective Land6 factors (g.s) and exchange parameters (no) for PrAlz 
and NdAl2. The crystal field parameten x and W. the critical temperature 'Tc and the low- 
temperature magnetic moments mo are taken from [I]. The values characterize the nature of 
the crystal field ground slale. 

RA11 0.739 -0.329 33.0 2.80 0.15 24.23 r, 
NdAlz -0.370 0.161 65.0 2.45 0.68 7.47 ri 

To summarize, we want to stress the two basic contributions of this work to the study of 
the magnetism of 4f systems with crystal field interactions: (i) an algebraic approach which 
allows the decomposition of a complex problem into simple parts, and (ii) the development 
of an algorithm to obtain the magnetic moments that does not require the knowledge of 
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the eigenfunctions. Not only does it make fitting the parameters easier, but it also gives a 
better understanding of the role of crystal field and exchange in determining the magnetic 
behaviour of different compounds. Although the present work was centred on an application 
to intermetallic compounds, the method is obviously not restricted to these systems. The 
potential of the computer algebra approach to crystal field and magnetic problems should 
therefore be noted. 

One of the authors (RRS) acknowledges a C"q/Brazil post-doctoral fellowship. 

Appendiv 

Factorized polynomials: 

where 
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Roots of the crystal field Hamiltonian: 

J = 4  

ur ,)  = 4(7b4 - 2ob6) 
w3) = 4(b4 + 16b6) 
~ ( r ~ )  = 2(7b4 + 2b6) 

= -2(13b4 + loba) 

J = 912 

E(r6) = 4(49b4 - 16b6) 
E(rA) = -49b4 + 16b6 - M 
E(r,Z) = -49b4 + 16bs + M 
M = (S(3605b: + 156864b6 + 272b;)}"*. 

Expression relating TC to crystal field and exchange parameters for J = 4 

where 

20 
21(7x - 6) 

c, = - 8(49X - 64) 
15[(7~ - 6 ) ( 9 ~  - 14)] 

c2 = 

5(25x - 78) 
+28($ 280[(7X - 6 ) ( 2  + 3)] c4= 24[(2* + 3 ) ( 9 ~  - 14)] 

(2227~ - 702) 
c3 = - 
E(r1) = 4(27X - 20) 

E(r4) = 2 ( 5 ~  + 2) 
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