The magnetism of rare-earth intermetallics using computer algebra: application to PrAl_{2} and NdAl_{2}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 L671
(http://iopscience.iop.org/0953-8984/5/50/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 14:27

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The magnetism of rare-earth intermetallics using computer algebra: application to PrAl_{2} and NdAl_{2}

R R Sobral, A P Guimarães and X A da Silva
Centro Brasileiro de Pesquisas Físicas, R Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil

Received 23 August 1993

Abstract

The magnetism of rare-earth intermetallic compounds is investigated with a model Hamiltonian containing crystal field and exchange terms. An algebraic analysis of the characteristic polynomial associated with the model is made and it is shown that, for $\mathrm{Pr}^{3+}(J=4)$ and $\mathrm{Nd}^{3+}(J=9 / 2)$, in the case of cubic symmetry, the ninth- and tenth-degree polynomials are decomposed into simple factors. From these factors, analytical expressions for the crystal field eigenvalues, the magnetic moments and the critical temperatures are derived. The results are applied to PrAl_{2} and NdAl_{2}; exchange parameters and effective g factors are easily obtained from crystal field, T_{C} and low-temperature magnetic moments data.

In order to analyse the magnetic properties of rare-earth intermetallic compounds one usually starts with a model Hamiltonian in which a crystal field term describes the electrostatic interaction of the $4 f$ electrons of the rare-earth ions with the neighbour charges, and an exchange term accounts for the inter-ionic spin interaction. Both terms contain adjustable parameters, which must be determined using inelastic neutron scattering data and magnetic data [1]. The computation of magnetic quantities from the model Hamiltonian is usually done entirely with numerical methods, even for cubic symmetrical crystal fields and in the molecular field approximation. This not only complicates the best fitting process, but also makes less visible the role of the model parameters in determining the magnetic behaviour of different compounds.

In this paper we show results of a computer algebra approach to determine eigenvalues and magnetic moments associated with the magnetic model Hamiltonian. In particular, we make an analysis of the magnetic behaviour of the ground state and obtain an analytic expression for the critical temperature. These results are applied to the intermetallic compounds PrAl_{2} and NdAl_{2}, which crystallize in the cubic Laves phase structure (Cl 5). Using crystal field parameters, Curie temperatures and low-temperature magnetic moments obtained from the literature, we calculate the exchange parameter and the effective Lande factor for these compounds.

The starting point is to obtain explicitly the characteristic polynomial associated with the model Hamiltonian \mathcal{H}

$$
\begin{equation*}
\left.\operatorname{det}\left|\langle J, n| \mathcal{H}-\delta_{m n} y\right| J, m\right\rangle \mid=0 \tag{1}
\end{equation*}
$$

where the Hamiltonian has two parts:

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{\mathrm{cf}}+\mathcal{H}_{\mathrm{mag}} . \tag{2}
\end{equation*}
$$

For cubic symmetry, the crystal field Hamiltonian can be written

$$
\begin{equation*}
\mathcal{H}_{\mathrm{cf}}=B_{4}\left[O_{4}^{0}+5 O_{4}^{4}\right]+B_{6}\left[O_{6}^{0}-21 O_{6}^{4}\right] \tag{3}
\end{equation*}
$$

where B_{4} and B_{6} are crystal field parameters and the O_{m}^{n} are Stevens' operators, which are listed in the literature $[2] ; \mid J, m)$ are the eigenstates of J_{z}, for a given angular momentum J. Equation (3) is only valid in a coordinate system (x, y, z) which coincides with three of the fourfold symmetry axes of the crystal; the z axis is taken as the quantized direction. In others coordinate systems the form of $\mathcal{H}_{\mathrm{cf}}$ is less simple [3].

In the molecular field approximation

$$
\begin{equation*}
\mathcal{H}_{\text {mag }}=-g \mu_{\mathrm{B}} h \cdot J \tag{4}
\end{equation*}
$$

where h is the total magnetic field:

$$
\begin{equation*}
g \mu_{\mathrm{B}} h=g \mu_{\mathrm{B}} h_{0}+\lambda_{0}(g-1)^{2}\langle J\rangle \tag{5}
\end{equation*}
$$

In (5), g is the Lande factor, μ_{B} the Bohr magneton, λ_{0} the exchange parameter and h_{0} is the applied field; $\langle J\rangle$ is the thermal average of the angular momentum operator J.

In order to compute the magnetic moments in the x direction, $n=(1,0,0)$, let us rewrite (4) as $\mathcal{H}_{\text {mag }}=-g \mu_{\mathrm{B}} h J_{x}$. The magnetic moments are then obtained as

$$
\begin{equation*}
g \mu_{\mathrm{B}}\langle i| J \cdot n|i\rangle \equiv-\frac{\mathrm{d} y_{i}}{\mathrm{~d} h}=-g \mu_{\mathrm{B}} \frac{\mathrm{~d} y_{i}}{\mathrm{~d} \alpha} \tag{6}
\end{equation*}
$$

where y_{i} are the roots of the polynomial in y generated by equation (1), $\alpha=g \mu_{\mathrm{B}} h$ and $h=h \cdot \boldsymbol{n}$ is the molecular field acting on the 4 f electrons along the direction n (a unitary vector) (see equation (5)). The reason for choosing the spontaneous magnetization in the x direction is that it is the experimentally observed easy magnetic direction [4]. Of course due to the cubic symmetry of the crystal field Hamiltonian (3), directions x, y and z, in our model, are magnetically equivalent. Actually, according to Boucherle amd Schweizer [5], at low temperature, below the Curie point, most of the $\mathrm{RAl}_{2}(\mathrm{R}=$ rare earth) exhibit a small distortion in the unit cell. This may explain why experimentally the directions ($1,0,0$), $(0,1,0)$ and $(0,0,1)$ are not magnetically equivalent. For the cases of $\operatorname{Pr}^{3+}(J=4)$ and $\mathrm{Nd}^{3+}(J=9 / 2)$, equation (1) was dealt with through computer algebra, yielding a ninthand a tenth-degree polynomial, respectively. This was done using REDUCE, a well know algebraic program. REDUCE also allowed the factorization of these polynomiais into smaller factors. In the case of Pr^{3+} we obtained four factors: one of the third-degree, and three of the second-degree; for Nd^{3+} we also have four factors: two of third-degree and two of second-degree. They are listed in the appendix.

These polynomials contain all the relevant magnetic information; let $P\left(y, B_{4}, B_{6}, \alpha\right)$ be one of the above mentioned factors, whose roots y_{i} are the energy eigenvalues.

We have

$$
\begin{align*}
& P\left(y, B_{4}, B_{6}, \alpha\right)=0 \tag{7}\\
& \frac{\partial P}{\partial y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} \alpha}\right)+\frac{\partial P}{\partial \alpha}=0 . \tag{8}
\end{align*}
$$

From equations (7) and (8), we can obtain the ground state magnetic moment for each value of the exchange parameter. For the case of Pr^{3+}, the ground state is given by the

Figure 1. Magnetic moment of the ground state (in $g \mu_{\mathrm{B}} /$ rare-earth ion) for PrAl_{2} and NdAl_{2} versus λ / W, where $\lambda=\left(g_{\text {eff }}-1\right)^{2} \lambda_{0}$. The curves were drawn using the crystal field parameters x and W given in table 1 .
lowest root of the third-degree polynomial; for Nd^{3+}, the third-degree polynomial with the plus sign contains the ground state. The results are shown in figure 1 using the crystal field parameters of PrAl_{2} and NdAl_{2} [1]; both curves show magnetic moment reduction, relative to the free ion value. For the PrAl_{2} curve, if $\lambda / W \leqslant 0.43$, there is no spontaneous magnetic order, although the magnetic moment of $\operatorname{PrAl}_{2}(J=4)$ saturates much earlier than that of $\mathrm{NdAl}_{2}(J=9 / 2)$. The initial value of the magnetic moment in the NdAl_{2} curve is $(11 / 6) g \mu_{B}$.

It is worth mentioning that for $\alpha=0$, the roots of the factor polynomials, i.e., the crystal field eigenvalues, are analytically expressed in terms of B_{4} and B_{6}; they are presented in the appendix. As far as we know, it is the first time these expressions have appeared in print; a particular solution for $B_{6}=0$ was given by Penney and Schlapp [2]. In fact, we have found that computer algebra can give analytical results for the crystal field eigenvalues of all rare-earth ions [6]. Crystal field eigenvalues are usually obtained numerically and displayed in tables or in graphical form, as in Lea et al [7]. These plots are used in the determination of crystal field parameters for intermetallic compounds, using inelastic neutron scattering data [8].

We will show how the factorized polynomials and their first and second derivatives can be used to obtain the energy eigenvalues of the model, up to α^{2},

$$
\begin{equation*}
y_{i} \cong y_{i}^{0}+\left(\lim _{\alpha \rightarrow 0} \frac{\mathrm{~d} y_{i}}{\mathrm{~d} \alpha}\right) \alpha+\frac{1}{2}\left(\lim _{\alpha \rightarrow 0} \frac{\mathrm{~d}^{2} y_{i}}{\mathrm{~d} \alpha^{2}}\right) \alpha^{2} . \tag{9}
\end{equation*}
$$

In order to obtain the coefficients of α and α^{2} in (9), we take the limit $\alpha \rightarrow 0$ of equations (7), (8) and (10)

$$
\begin{equation*}
\frac{\partial P}{\partial y}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} \alpha^{2}}\right)+\frac{\partial^{2} P}{\partial y^{2}}\left(\frac{\mathrm{~d} y}{\mathrm{~d} \alpha}\right)^{2}+2 \frac{\partial^{2} P}{\partial y \partial \alpha}\left(\frac{\mathrm{~d} y}{\mathrm{~d} \alpha}\right)+\frac{\partial^{2} P}{\partial \alpha^{2}}=0 \tag{10}
\end{equation*}
$$

At this point, we would like to emphasize that in order to compute the coefficients $\lim _{\alpha \rightarrow 0}(\partial P / \partial y), \lim _{\alpha \rightarrow 0^{(}}(\partial P / \partial \alpha)$, etc, in (7), (8) and (10) we have to make use of the analytical expressions for the eigenvalues of the crystal field Hamiltonian.

For the ground state energy level we have, for Pr^{3+} :

$$
\begin{equation*}
\left(\frac{\mathrm{d} y_{0}}{\mathrm{~d} \alpha}\right)_{\alpha=0}=0 \quad\left(\frac{\mathrm{~d}^{2} y_{0}}{\mathrm{~d} \alpha^{2}}\right)_{\alpha=0}=-\frac{28}{15} \frac{1}{b_{4}-6 b_{6}} . \tag{11}
\end{equation*}
$$

For Nd^{3+} :

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left(\frac{\mathrm{~d} y_{0}}{\mathrm{~d} \alpha}\right)=\frac{11}{6} \quad\left(\frac{\mathrm{~d}^{2} y_{0}}{\mathrm{~d} \alpha^{2}}\right)_{\alpha=0}=-\frac{8}{945} \frac{245 b_{4}-47 b_{6}}{\left(b_{4}-b_{6}\right)\left(25 b_{4}-3 b_{6}\right)} \tag{12}
\end{equation*}
$$

where b_{4} and b_{6} are related to B_{4} and B_{6} (see appendix). In obtaining (11) and (12) we have assumed that the crystal field ground states of Pr^{3+} and Nd^{3+} are Γ_{3} and Γ_{6}, respectively; these are the cases of PrAl_{2} and NdAl_{2}. Using (6), (11) and (12) we can obtain the threshold value of $\lambda_{0}\left(\lambda_{c} / W=0.433\right)$ for the PrAl_{2} curve in figure 1 . Also, using (6), (9) and (12), we can obtain the initial value of the magnetic moment (for $\lambda_{0} / W=0$) for the NdAl_{2} curve in the figure: the result is $\lim _{\alpha \rightarrow 0}\left(\mathrm{~d} y_{0} / \mathrm{d} \alpha\right)=11 / 6$ (in $g \mu_{\mathrm{B}}$ units). Using the same procedure, we can obtain analytically the limits as $\alpha \rightarrow 0$ of ($\mathrm{d} y_{i} / \mathrm{d} \alpha$) and ($\mathrm{d}^{2} y_{i} / \mathrm{d} \alpha^{2}$) of all other levels. Expressions of energy eigenvalues, up to α^{2}, were given by Schumacher and Hollingsworth [9] for the case $B_{6}=0$, using numerical methods. The value of the critical temperature is obtained from

$$
\begin{equation*}
\langle J \cdot n\rangle=\frac{\sum_{i}\left(-\mathrm{d} y_{i} / \mathrm{d} \alpha\right) \exp \left(-y_{i} \beta\right)}{\sum_{i} \exp \left(-y_{i} \beta\right)} \tag{13}
\end{equation*}
$$

where the right hand side is linearized in $\alpha\left(\alpha=\lambda_{0}(g-1)^{2}\{J \cdot n\rangle\right)$. An expression for T_{C} in the case of Pr^{3+} compounds is given in the appendix.

Using the crystal field parameters and the experimental value of T_{C} given in the review by Purwins and Leon [1] for PrAl_{2}, the expression (A13) (see appendix) gives

$$
\begin{equation*}
\left(g_{\mathrm{eff}}-1\right)^{2} \frac{\lambda_{0}}{W}=1.55 \tag{14}
\end{equation*}
$$

This result, together with the value of the moment $m_{0}=2.8 \mu_{\mathrm{B}}$ for the ion Pr^{3+} in PrAl_{2} [1], allows, using the curve for PrAl_{2} in the figure, the determination of $g_{\text {eff }}=0.75$. Again, using (14), $\lambda_{0}=24.23 \mathrm{meV}$. A similar procedure was followed for Nd^{3+} in NdAl_{2}. The results for PrAl_{2} and NdAl_{2} are given in table 1.

Table 1. Computed effective Lande factors (geff) and exchange parameters (λ_{0}) for $\operatorname{PrAl}{ }_{2}$ and NdAl_{2}. The crystal field parameters x and W, the critical temperature T_{C} and the lowtemperature magnetic moments m_{0} are taken from [1]. The Γ values characterize the nature of the crystal field ground state.

	x	$W(\mathrm{meV})$	$T_{\mathrm{C}}(\mathrm{K})$	$\mathrm{m}_{0}\left(\mu_{\mathrm{B}} /\right.$ ion $)$	$g_{\text {eff }}$	$\lambda_{0}(\mathrm{meV})$	Γ_{i}
PrAl_{2}	0.739	-0.329	33.0	2.80	0.75	24.23	Γ_{3}
NdAl_{2}	-0.370	0.161	65.0	2.45	0.68	7.47	Γ_{6}

To summarize, we want to stress the two basic contributions of this work to the study of the magnetism of 4 f systems with crystal field interactions: (i) an algebraic approach which allows the decomposition of a complex problem into simple parts, and (ii) the development of an algorithm to obtain the magnetic moments that does not require the knowledge of
the eigenfunctions. Not only does it make fitting the parameters easier, but it also gives a better understanding of the role of crystal field and exchange in determining the magnetic behaviour of different compounds. Although the present work was centred on an application to intermetallic compounds, the method is obviously not restricted to these systems. The potential of the computer algebra approach to crystal field and magnetic problems should therefore be noted.

One of the authors (RRS) acknowledges a $\mathrm{CNPq} /$ /Brazil post-doctoral fellowship.

Appendix

Factorized polynomials:
$J=4$

$$
\begin{align*}
P_{1}\left(\Gamma_{1}, \Gamma_{3}, \Gamma_{4}\right) & =y^{3}-2 y^{2}\left(23 b_{4}-6 b_{6}\right)+16 y\left\{35 b_{4}^{2}+86 b_{4} b_{6}-324 b_{6}^{2}-\alpha^{2}\right\} \\
& -32\left\{49 b_{4}^{3}+658 b_{4}^{2} b_{6}-2056 b_{4} b_{6}^{2}-640 b_{6}^{3}-\alpha^{2}\left(9 b_{4}-10 b_{6}\right)\right\} \tag{A1}\\
P_{2}\left(\Gamma_{3}, \Gamma_{5}\right)= & -y^{2}-22 y\left(b_{4}-2 b_{6}\right)+4\left\{26 b_{4}^{2}+436 b_{4} b_{6}+320 b_{6}^{2}+\alpha^{2}\right\} \tag{A2}\\
P_{3}^{ \pm}\left(\Gamma_{5}, \Gamma_{4}\right)= & -y^{2}-2 y\left(6 b_{4}+8 b_{6} \pm \alpha\right)+364 b_{4}^{2}+384 b_{4} b_{6}+80 b_{6}^{2} \\
& \pm \alpha\left(48 b_{4}+20 b_{6}\right)+3 \alpha^{2} \tag{A3}
\end{align*}
$$

where
$b_{4}=F_{4} B_{4}=W x \quad b_{6}=F_{6} B_{6}=W(1-|x|) \quad F_{4}=60 \quad F_{6}=1260$.

$$
\begin{align*}
& J=9 / 2 \\
& \begin{aligned}
P_{1}^{ \pm}\left(\Gamma_{6}, \Gamma_{8}^{1}, \Gamma_{8}^{2}\right) & =y^{3}-y^{2}\left(98 b_{4}-32 b_{6} \pm 3 \alpha / 2\right) \\
& -y\left\{34832 b_{4}^{2}-3136 b_{4} b_{6} \pm 1022 b_{4} \alpha+3152 b_{6}^{2} \pm 144 b_{6} \alpha\right. \\
& \left.+61(\alpha / 2)^{2}\right\}+3\left\{1020768 b_{4}^{3}+281344 b_{4}^{2} b_{6} \pm 60312 b_{4}^{2} \alpha\right. \\
& -128576 b_{4} b_{6}^{2} \pm 3808 b_{4} b_{6} \alpha+3402 b_{4}(\alpha / 2)^{2} \\
& \left.-23552 b_{6}^{3} \mp 4104 b_{6}^{2} \alpha-64 b_{6} \alpha^{2} \pm 21(\alpha / 2)^{3}\right\}
\end{aligned} \\
& \\
& P_{2}^{ \pm}\left(\Gamma_{8}^{1}, \Gamma_{8}^{2}\right)= \\
& \\
& \tag{A4}\\
& \\
& \tag{A5}\\
& \\
& \pm 77 y_{4} \alpha+2 y\left(49 b_{4}-16 b_{6} \pm \alpha / 2\right)+3\left\{5208 b_{4}^{2}+3136 b_{4} b_{6}\right.
\end{align*}
$$

where
$b_{4}=\frac{F_{4} B_{4}}{5}=\frac{W x}{5} \quad b_{6}=F_{6} B_{6}=W(1-|x|) \quad F_{4}=60 \quad F_{6}=2520$.

Roots of the crystal field Hamiltonian:
$J=4$

$$
\begin{align*}
& E\left(\Gamma_{1}\right)=4\left(7 b_{4}-20 b_{6}\right) \tag{A6}\\
& E\left(\Gamma_{3}\right)=4\left(b_{4}+16 b_{6}\right) \tag{A7}\\
& E\left(\Gamma_{4}\right)=2\left(7 b_{4}+2 b_{6}\right) \tag{A8}\\
& E\left(\Gamma_{5}\right)=-2\left(13 b_{4}+10 b_{6}\right) \tag{A9}
\end{align*}
$$

$J=9 / 2$

$$
\begin{align*}
& E\left(\Gamma_{6}\right)=4\left(49 b_{4}-16 b_{6}\right) \tag{A10}\\
& E\left(\Gamma_{8}^{1}\right)=-49 b_{4}+16 b_{6}-M \tag{All}\\
& E\left(\Gamma_{8}^{2}\right)=-49 b_{4}+16 b_{6}+M \tag{A12}\\
& M=\left\{5\left(3605 b_{4}^{2}+1568 b_{4} b_{6}+272 b_{6}^{2}\right)\right\}^{1 / 2}
\end{align*}
$$

Expression relating T_{C} to crystal field and exchange parameters for $J=4$

$$
\begin{equation*}
\frac{\lambda}{W}=\frac{\mathrm{e}^{-\beta E\left(\Gamma_{1}\right)}+2 \mathrm{e}^{-\beta E\left(\Gamma_{3}\right)}+3 \mathrm{e}^{-\beta E\left(\Gamma_{4}\right)}+3 \mathrm{e}^{-\beta E\left(\Gamma_{5}\right)}}{c_{1} \mathrm{e}^{-\beta E\left(\Gamma_{1}\right)}+c_{2} \mathrm{e}^{-\beta E\left(\Gamma_{3}\right)}+c_{3} \mathrm{e}^{-\beta E\left(\Gamma_{4}\right)}+c_{4} \mathrm{e}^{-\beta E\left(\Gamma_{5}\right)}} \tag{A13}
\end{equation*}
$$

where
$c_{1}=-\frac{20}{21(7 x-6)}$
$c_{3}=-\frac{(2227 x-702)}{280[(7 x-6)(2 x+3)]}+2 \beta\left(\frac{1}{2}\right)^{2}$
$E\left(\Gamma_{1}\right)=4(27 x-20)$
$E\left(\Gamma_{4}\right)=2(5 x+2)$
$\beta=\frac{1}{k_{\mathrm{B}} T_{\mathrm{C}}}$.

$$
\begin{aligned}
& c_{2}=\frac{8(49 x-64)}{15[(7 x-6)(9 x-14)]} \\
& c_{4}=\frac{5(25 x-78)}{24[(2 x+3)(9 x-14)]}+2 \beta\left(\frac{5}{2}\right)^{2} \\
& E\left(\Gamma_{3}\right)=-4(15 x-16) \\
& E\left(\Gamma_{5}\right)=-2(3 x+10)
\end{aligned}
$$

References

[1] Purwins H G and Leon A 1990 Adv. Phys. 39309
[2] Penney W G and Schlapp R 1932 Phys. Rev. 41194
[3] Fischer G and Herr A 1986 Phys. Status. Solidi b 136103
[4] Eyers A, Alke A, Leson A, Kohake D and Purwins H G 1982 J. Phys. C: Solid State Phys. 152459
[5] Boucherle J X and Schweizer J 1981 J. Magn. Magn. Mater. 24308
[6] Sobral R R et al 1994 to be published
[7] Lea K R, Leask M J M and Wolf W P 1962 J. Phys. Chem. Solids 231381
[8] Greidanus F J A M, de Jongh L J, Huiskamp W J, Furrer A and Buschow K H J 1982 Crystalline Electric Field Effects in felectron Magnetism ed R P Guertin, W Suski and Z Zolmerek (New York: Plenum) p 13
[9] Schumacher D P and Hollingsworth C A 1966 J. Phys. Chem. Solids 27749

